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The microrheology of viscoelastic fluids containing light-scattering inclusions is measured by depolarized
dynamic light scattering �DDLS� from optically anisotropic spherical colloidal probes. The anisotropy of the
probes allows us to measure both their translational and the rotational mean squared displacements simulta-
neously, and DDLS allows us to suppress the light scattered from the inclusions. The storage and loss moduli
are determined from both mean squared displacements and the results compared with mechanical
measurements.
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I. INTRODUCTION

Soft materials abound in nature and in industrial products,
from biological materials �for instance, proteins or DNA so-
lutions� to polymeric solutions, gels, paints, cosmetics,
foods, etc. Thus the development of methods to characterize
their mechanical properties �among others� is of wide inter-
est. Microrheological methods are currently used to charac-
terize the mechanical properties of such systems at frequen-
cies and space scales unattainable to mechanical instruments,
and to characterize the mechanical properties of very small
systems, such as the cytoplasm of living cells �1–4�. Mi-
crorheology is based on a frequency analysis of the diffusive
motion of probe colloidal particles embedded in the material
of interest �5�. It uses as a theoretical framework a generali-
zation of the Stokes-Einstein relation between the transla-
tional motion of the probe particles and the local mechanical
properties of the host medium, i.e.,

G*��� =
kBT

i��a��r2����
, �1�

where ��r2�w�� is the frequency dependent mean squared
displacement obtained from that in real time ��r2�t��, � is
the frequency of shearing, kBT is the thermal energy, and a is
the particle’s radius. G*��� represents the complex shear
modulus, whose real part G���� is the elastic or storage
modulus and the imaginary part G���� is the viscous or loss
modulus �6�. Most of the current microrheological methods
are based on the measurement and analysis of the transla-
tional motion of probe particles in the host medium �6–8�.
Nevertheless, the rotational motion also probes the mechani-
cal response of the medium, in this case to torsional shear
strains, and it can be used as an alternative and/or comple-
mentary way to determine the rheology of soft materials �9�.
For spherical probes, one can also use a simple generaliza-
tion of the Stokes-Einstein relation between the mechanical
properties of the host and the rotational diffusion, which for
small angular displacements is characterized by the mean
squared angular displacement ���2�t��, where ���t� is the
angular displacement of the particle’s director with two de-
grees of freedom, i.e.,

G*��� =
kBT

i�2�a3���2����
, �2�

where ���2���� is the mean squared angular displacement in
the frequency domain �10�.

Then, microrheological methods relay upon the accurate
determination of either the translational or the rotational par-
ticles’s mean squared displacement �MSD�. A number of dif-
ferent techniques such as single and multiple light scattering,
optical and confocal microscopy, atomic force microscopy,
are available to measure those quantities in different experi-
mental conditions. Naturally, some are better suited for some
situations than others �11–13�. In many systems of interest,
such as solutions of filamentous proteins, DNA, polymers,
etc., the matrix could itself scatter light significantly and/or it
can contain highly light-scattering components as it is the
case of living cells. Thus one needs to develop efficient ex-
perimental methods capable to distinguish the motion of the
probes from that of the materials components. In a previous
work �9�, we have shown that the microrheology of vis-
coelastic media, such as polymer solutions, obtained from
the rotational motion of spherical probes coincides with that
obtained from the translational motion of the same probes
and with mechanical measurements, when the mesh size of
the polymer network is much smaller than the probes size.
There, we use optically anisotropic spherical particles as the
probes and depolarized dynamic light scattering �DDLS� to
determine both the translational and the rotational MSD si-
multaneously. As we pointed out in Ref. �9�, the intrinsic
light-scattering power of the system studied there �aqueous
solution of polyacrylamide of high molecular weight�, could
be sufficiently high to mask measurements performed by
usual dynamic light scattering. However, as we noted in that
work, DDLS from optically anisotropic probes allows us to
suppress the background signal when the system of interest
scatters light but does not depolarize it. In the present work
we investigate in more detail the limits of such a method.
Here we present experimental results for the microrheology
of viscoelastic fluids whose light-scattering capability is var-
ied by adding inclusions. As in our previous work, we use
DDLS to measure the rotational and translational motion of
optically anisotropic probe particles embedded in those flu-
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ids. As in �9�, the systems studied here are polyacrylamide
polymers of high molecular weight dissolved in water. The
inclusions are polystyrene spheres, of diameter 1 �m, dis-
persed in the solution at various volume fractions. In the
following section we describe details of the sample prepara-
tion, experimental techniques, and data analysis. In Sec. III,
we present and discuss our results.

II. METHODS

A. Sample preparation

Polymeric solutions are prepared by dissolving polyacry-
lamide �Sigma�, molecular weight MW=5–6�106 g/mol, in
deionized water of resistivity 17.0 M� cm. Polystyrene
spherical particles �PS� of diameter 1 �m dispersed in the
solution at various volume fractions 	PS, serve as highly
light-scattering inclusions. The probe particles are optically
anisotropic spherical particles made of liquid crystals �LC�
of diameter 430 nm. The probes are dispersed in the solution
at a very low volume fraction 	LC�10−5 to avoid interaction
between them and with the inclusions. The probes are made
by emulsification of liquid crystal �RM257, Merck� in water
at the temperature of the nematic phase as follows: 0.2 g of
reactive monomer RM257 and 0.1 g of photoinitiator
Darocur 1173 �Ciba� are dissolved in 20 g of ethanol at room
temperature. The mixture is then injected into stirring water,
producing a polydisperse dispersion of liquid crystalline
�with photoinitiator� droplets in water. The system is allowed
to equilibrate at 80 °C, above the temperature of the crystal-
nematic phase transition of the monomer. The photoinitiator
is activated by irradiation with UV light, which polymerizes
the monomer, freezing the internal nematic order in the drop-
let �14,15�. We corroborated that the probes were solid
spheres with optical anisotropy, after UV irradiation, by dry-
ing a drop of the suspension and observing the particles by
optical microscopy. Images of the particles as seen between
crossed polarizers can be found in �15�. Suspensions of the
anisotropic particles with low polydispersity are obtained by
fractionation, following the depletion crystallization method
of Bibette �16�. In the present work, we use probe particles
of hydrodynamic diameter 430 nm, which is the more abun-
dant species in the batch, with a size polydispersity of 10%.
Mechanical measurements of the viscoelastic moduli are car-
ried out using the concentric cylinders geometry in a Paar-
Physica MCR300 rheometer. All experiments are performed
at a constant temperature of 23 °C. The mesh size 
 of the
polymeric network is estimated as 
=RG�c* /c�3/4 �17�, where
RG is the radius of gyration, c and c* are the polymer con-
centration and its critical value, respectively. The latter is
determined as the concentration at the onset of the power law
behavior of the low shear viscosity vs c. We find 
 to be in
the range of 1–9 nm for matrices with polymer concentra-
tion in the range of 0.8–0.1 % weight by weight �w/w� stud-
ied here. Thus the mesh size associated with the polymer
network is much smaller than the probe particle’s size, which
is a necessary condition to avoid caging effects of the tracer
particles. Figure 1 shows the low-shear viscosity � of the
polymeric solution for a range of polymer concentrations. As
one can see here, there is a clear change in the slope of the

viscosity at the polymer concentration c*�7�10−3% �w/w�,
referred to as the critical concentration, where the solution
changes from dilute to semidilute.

B. Depolarized dynamic light scattering

Depolarized dynamic light scattering can be used to mea-
sure simultaneously the translational and rotational dynamics
of anisotropic particles. The setup used in this work is stan-
dard. The sample is placed in a goniometer �Brookhaven� in
the center of an optical vat filled with index matching fluid
�decalin�. A polarized laser beam of wavelength �=488 nm
is focused onto the sample cell. The direction of the x and z
axis of the laboratory-fixed frame are defined by the direc-
tion of the wave vector of the incident light ki and by the
direction of its polarization n, respectively. The light scat-
tered at an angle � with respect to the axis x is collected by
a monomode optical fiber located on the x-y �scattering�
plane. A second polarizer is located before the optical fiber to
ensure that only one mode reaches the detector. The scattered
light is split and directed to two photon detectors �ALV/SO-
SIPD�, and the signal is processed by a time correlator �ALV
6010/160� operated in the pseudocross-correlation mode.
The output of the correlator is g�2��k , t�, the time correlation
function of the scattered light intensity I�k , t� with wave vec-
tor k= �4�ns /��sin�� /2�, i.e.,

gT
�2��k,t� = �I�k,0�I�k,t��/�I�k,0��2, �3�

where ns is the refraction index of the medium, t is the lag
time, and the angular brackets mean a time average �15,18�.

The nematiclike internal structure of the optically aniso-
tropic LC particles allows us to assume a cylindrical symme-
try of the polarizability tensor �. Its diagonal components
are �, �, and � in the particle-fixed frame with the x
component pointing in the direction of the particle director
û�t�, a unit vector whose direction, as seen from the
laboratory-fixed frame, changes randomly due to fluctuating
torques exerted by the solvent molecules. The anisotropy of
the scattering particles depolarizes the incident light and one
can measure separately the parallel EVV�k , t� and perpendicu-
lar EVH�k , t� components, with respect to the direction of the
incident polarization, of the scattered electrical field by using

FIG. 1. The critical polymer concentration c* is determined as
the concentration at the onset of the power law behavior of the
viscosity � as a function of polymer concentration c.
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the optical setup with the polarization directors of both po-
larizers vertical �VV� or with the first vertical and the second
horizontal �VH�, respectively. The electrical field compo-
nents fluctuate due to the random translational and rotational
motion of the particles and one can define two different cor-
relation functions between these components of the scattered
electrical field, namely,

gVV
�1��k,t� = �EVV

* �k,0�EVV�k,t��/�	EVV�k,0�	2� �4�

and

gVH
�1� �k,t� = �EVH

* �k,0�EVH�k,t��/�	EVH�k,0�	2� . �5�

With the assumption of independence between the trans-
lational and the rotational dynamics, we have for spherical
particles �18�

gVV
�1��k,t� = �A + BfR�t��f�k,t� �6�

and

gVH
�1� �k,t� = fR�t�f�k,t� , �7�

where fR�t� and f�k , t� are the dynamic correlation functions
describing rotational and translational motion of single par-
ticles in the host matrix, respectively. The field correlation
functions, Eqs. �6� and �7�, for each polarizer’s geometry are
obtained from the corresponding intensity correlation func-
tions via the Siegert relation, i.e., g�2��k , t�=1+b	g�1��k , t�	2,
where b is an experimental constant of order 1 �18�. The
constants A and B in Eq. �6� depend only on the components
of the polarizability tensor which are intrinsic particle prop-
erties and can be measured in a known host fluid �15�, A
=452 / �452+4�2� and B=4�2 / �452+4�2�, where 

= 1
3 �� +2�� and �=� −� represent the isotropic and the

anisotropic parts of the polarizability tensor. In this work,
those constants are determined by light scattering from par-
ticles in water, using the condition A+B=1 and the ratio
� /��2= �3�IVV�−4�IVH�� /45�IVH� �18�.

Although the rotational and translational dynamics are
mixed up in the field correlation functions, one can see from
Eqs. �6� and �7� that the dynamic correlation functions can be
obtained either by measuring both gVV

�1��k , t� and gVH
�1� �k , t� at

the same scattering angle, or by measuring gVH
�1� �k , t� at two

different scattering angles. As we show below, both possibili-
ties can be realized and both lead to the same results in the
absence of inclusions and at low polymer concentrations,
when the light scattered by the polymer matrix is only a few
percent of the light scattered by the probe particles. On the
contrary, in the presence of inclusions and/or more concen-
trated polymeric matrices having a higher scattering power,
the second option provides a method to block the light scat-
tered by the medium, avoiding spurious signal from reaching
the detector. The mean squared displacements, rotational and
translational, can be obtained from the dynamic correlation
functions by using the Gaussian approximation, i.e., we as-
sume f�k , t�=exp�−k2W�t�� and fR�t�=exp�−6��t�� �19�,
where W�t�= ��r2�t�� /6 and ��t�= ���2�t�� /4.

C. Data analysis

Mechanical properties of the systems studied here are de-
termined from the measured mean squared displacements,
rotational and translational, following the method devised by
Dasgupta et al. �20�. Here, we reproduce only the equations
used in the analysis of our data. Thus the storage and the loss
moduli are obtained as follows:

G���� = G���
1/�1 + �������

�cos������
2

− ����������

2
− 1�� , �8�

G���� = G���
1/�1 + �������

�sin������
2

− ������1 − ������

2
− 1�� ,

�9�

where

G��� =
kBT

�a��r2������1 + �����1 + ����/2� .
�10�

Here, ��r2���� denotes the magnitude of ��r2�t�� evaluated
at t=1/� and ��� and ���� are the first and second order
logarithmic time derivative of the MSD, respectively, i.e.,
���= �� ln��r2�t�� /� ln t�t=1/� and ����= ��2 ln��r2�t�� /
� ln t2�t=1/�. Similarly, ���� and ����� are the first and sec-
ond order logarithmic derivatives of G���, respectively.

III. RESULTS

The samples we study are aqueous dispersions of poly-
acrylamide at a concentration of 0.5% �w/w�, where LC par-
ticles are used as tracer particles. Additionally, different
amounts of latex particles �the inclusions� are added to the
samples in order to vary the ratio between light scattered by
the probe particles and by the host medium. The inclusions’
volume fraction is varied from 10−6 to 5�10−5. For 	PS
�0, up to �10−5, the average intensity measured in the VH
configuration is the same as without inclusions. However, for
volume fractions �5�10−5 or above, there is an additional
contribution due to multiple scattering from the inclusions.

Although the main interest here is to study the effect of
the inclusions, for comparison let us consider first the case
without them, i.e., 	PS=0. In this case most of the light
scattered by the sample comes from the probe particles, and
traditional single light-scattering microrheology in both ge-
ometries, VV and VH, leads to equivalent results �9�. Figure
2 shows the time correlation functions measured using both
geometries, obtained as the time average of data collected for
1–3 h, depending on the decay time and count rate. As a
reference, we have also plotted the intensity correlation func-
tion of LC particles dispersed in water. As we can see, the
decay time of the correlation function corresponding to the
tracers immersed in the polymer solution is, approximately, a
decade longer than that corresponding to those dispersed in
water, meaning that the presence of the polymer slows down
the motion of the particles. Figure 3 shows the translational
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and rotational mean squared displacements corresponding to
the system in Fig. 2, measured using both procedures men-
tioned in the previous section. Open symbols represent the
mean squared displacements extracted from measurements in
the VH configuration at two different scattering angles, 20°
and 30°, whereas solid symbols correspond to the measure-
ments in VV and in VH configurations at the same scattering
angle, 20°. As one can see here, both procedures lead to
similar results. Furthermore, one can also notice here that the
data for the rotational motion resemble those corresponding
to the translational case. In fact, if we normalize ��r2�t�� by
2a2, the resulting curve is very similar to the one for
���2�t��. This indicates already that the microrheology ob-
tained from rotational diffusion will coincide with that from
translational diffusion, as can be deduced from Eqs. �1� and
�2�. In Fig. 4 we compare the storage �open squares� and loss
�open circles� moduli measured using a mechanical rheom-
eter with those determined by microrheology experiments
�lines�. In Fig. 4�a�, lines correspond to the moduli obtained
from the translational mean squared displacement and in Fig.
4�b� to those from the rotational mean squared displacement.
This level of agreement between optical microrheology, from
both translation and rotation, with mechanical measurements
has been previously reported �9�.

Let us now present and discuss our results when the host
matrix has itself a high light-scattering power, which in our

case is provided by the presence of 1-�m polystyrene
spheres in the medium. We examine samples where 	PS
�10−6, 5�10−6, 10−5, and 5�10−5. For this set of samples,
the ratio between the light scattered by the system containing
only the inclusions and containing both inclusions and
probes is 0.29, 0.47, 0.64, and 0.80, respectively, when mea-
sured in the VV configuration at 30°. Thus, in such cases, the
inclusions’ contribution to the VV component of the scat-
tered light becomes important and masks the dynamics of the
probes. As we show below, such inconvenience is overcome
when the dynamic correlation functions f�k , t� and fR�t� are
determined from gVH�k , t�, measured by depolarized dynamic
light scattering at two different angles. This method assumes
that the depolarization of light is due only to the rotational

FIG. 2. Time correlation function of the light scattered from
optically anisotropic spherical particles dispersed in water �line� and
in aqueous solutions of polyacrylamide at a concentration of 0.5%
�w/w� �symbols�.

FIG. 3. Translational and rotational mean squared displacements
of LC particles, measured using the optical configurations as indi-
cated in Fig. 2. The line represents a slope of 1. As it can be seen,
both mean squared displacements have slope lower than 1, indica-
tive of viscoelastic relaxation processes in the medium.

FIG. 4. Comparison of the storage G� and loss G� moduli of the
sample in Fig. 3, measured by translational �a� and rotational �b�
probe diffusion microrheology �lines� and mechanical rheology
�symbols�.

FIG. 5. Intensity of the light scattered at 30°, measured in the
VH configuration, as a function of the polystyrene spheres volume
fraction �open symbols�. The inset shows the results corresponding
to measurements performed in the VV configuration. Lines repre-
sent the case 	PS=0.

HARO-PÉREZ et al. PHYSICAL REVIEW E 75, 041505 �2007�

041505-4



motion of the probes. As we show in Fig. 5, such a condition
is fulfilled by the systems studied here. Figure 5 shows the
intensity of the light scattered �at 30°� by samples containing
the probes and the inclusions at different volume fractions.
The symbols represent the total light scattered from the sys-
tem, i.e., the contributions from the polymer solution con-
taining the probes and the inclusions. The lines represent the
light scattered by the solution containing only the probes. As
one can see here, in the VH configuration the contribution
from the inclusions is vanishing small in the range 	PS
=0–10−5. Let us note here that in this configuration the light
scattered from the polymer solution is practically zero. Thus
the dashed line is basically the intensity of the light scattered
by the probes. The inset shows the corresponding results for
the measurements performed in the VV configuration. As it
was mentioned above, in this case there is a strong contribu-
tion from the inclusions which increases as 	PS increases. In
this configuration, the polymer solution also contributes with
about 10% of the light scattered from the solution including
only the probes �solid line�. We should note that this scheme,
however, will fail to provide reliable results if a significant
amount of light is depolarized by the sample itself or by
other means, for instance in the case of multiple light scat-
tering, unless care is taken to account for those effects.

Figure 6 shows a comparison of the translational mean
squared displacement of the anisotropic particles, in the
samples with and without inclusions, determined by measur-
ing both gVV�k , t� and gVH�k , t� at the same scattering angle
�scheme VV-VH� and by measuring gVH�k , t� at two angles
�scheme VH-VH�. Figure 6�a� shows the results obtained in
the scheme VV-VH at 30°. As one can see here, in the
sample where 	PS=10−6 the MSD is almost identical to that
in the sample without inclusions, the curves fall practically
on top of each other. However, as the concentration of inclu-
sions is increased further, the MSD is shifted downward
more for higher values of 	PS. Since in these cases there is

an increasing contribution of the inclusions to the scattering
of light in the parallel polarization configuration, the decay
of the light intensity correlation function is caused by the
motion of both species, the probes and the inclusions. There-
fore the �apparent� MSD determined in this way is not the
actual mean squared displacement of the probes, but a rather
complex combination of the MSD of both types of particles.
Let us note, however, that the change in the MSD appears to
be only in its magnitude, not in its shape. In fact, we found
that the mean squared displacement can be scaled by an ef-
fective radius ā, determined as the average size of both types
of particles �the probes and the inclusions�, weighted by its
corresponding concentration. The effective radius ranges
from 0.215 �m �the radius of the liquid crystal particles�, for
the sample without inclusions, to a value around 0.5 �m �the
radius of the polystyrene particles�. As one can see in the
inset, the scaled MSD’s ���r2�t��ā� collapse to a single
curve, except for the system with 	PS�5�10−5 where mul-
tiple scattering of light is observed.

Figure 6�b� shows the results from the VH-VH scheme at
20° and 30°. As one can see here, in this scheme the resulting
MSD’s coincide within the experimental error �which is
within the symbol size�, except again for the system with the
highest concentration of inclusions where there is an addi-
tional contribution to the depolarization of light from mul-
tiple light scattering. In fact, the mean squared displacement
obtained for this sample shows a different time dependence
leading to completely different microrheology results. The
rotational MSD’s exhibit a similar behavior, i.e., they are
shifted �upwards in this case� as the concentration of inclu-
sions increases when measured using the VV-VH scheme,
but they coincide in the VH-VH scheme, except for the sys-
tem with 	PS�5�10−5.

In Fig. 7 we present the microrheology results for G� and
G�, obtained from the analysis of both the translational �a�

FIG. 6. Translational mean squared displacement of optically
anisotropic probe particles embedded in matrices containing differ-
ent volume fractions 	PS of latex particles �symbols� measured: �a�
in the VV-VH geometry at 30° and �b� in the VH-VH geometry at
two different angles, 20° and 30°. The inset shows the scaled mean
squared displacements.

FIG. 7. Comparison of storage G� and loss G� moduli of the
sample with 	PS�10−5, as measured in the VH-VH scheme by �a�
translational and �b� rotational probe diffusion microrheology
�lines�, and by mechanical rheology �symbols�.
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and the rotational �b� diffusion of the probe particles, mea-
sured in the VH-VH scheme. These results correspond to
measurements performed in the sample with the highest con-
centration of inclusions where multiple scattering is still neg-
ligible, namely, the system with 	PS�10−5. However, as one
can see from Fig. 6�b�, the results obtained from systems
with lower concentrations of inclusions would be practically
the same as those presented here. Furthermore, given the
correspondence, by a factor of 2a2, between the translational
and the rotational MSD’s, the results from both diffusion
motions are essentially the same. For comparison, in Fig. 7
we present also the mechanical measurements. We verified
that the presence of the inclusions does not affect the rheol-
ogy of the polyacrylamide solutions. We found similar me-
chanical results for the elastic and viscous moduli measured
in samples without inclusions and with added polystyrene
spheres at a volume fraction of 10−4, which is higher than the
highest concentration used for the optical experiments. Fig-
ure 7�a� shows that comparison when the microrheology is
performed using the translational MSD, whereas Fig. 7�b�
shows the corresponding comparison for the rotational MSD.
As one can see here, the agreement with mechanical results
is excellent in the range of frequencies where both tech-
niques overlap. These results demonstrate the feasibility to
use light scattering techniques to measure the rheology of
viscoelastic media with high scattering power. Under the
conditions of our experiment, we found that one can obtain
reliable results even when the intensity of the light scattered

by the matrix �in our case due to the inclusions� is as high as
65% of the total. Other experimental conditions will set a
different value. The method assumes single scattering of
light. Thus it is limited to conditions where multiple light
scattering, either from the matrix or from the probes, is neg-
ligible. In principle, more turbid complex media could be
studied by DDLS if single scattering events could be isolated
from the measured depolarized intensity by using cross-
correlation detection schemes �21,22�.

IV. CONCLUSIONS

In this work we show that depolarized dynamic light scat-
tering from optically anisotropic spherical tracer particles is a
suitable technique to determine the rheology of strongly
light-scattering media. This is possible when the total depo-
larized scattered light, as long as it is free from multiple
scattering, is only due to the dynamics of the tracer particles
as is the case of the system studied here. Our results suggest
that DDLS could be useful to study systems where intrinsical
inclusions are present, perhaps even in complex systems
such as living biological cells.
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